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DESCRIPTION AND INITIAL CALIBRATION OF THE LANGLEY 12-INCH 

HYPERSONIC cmc-HEATm TUNNEL 

By Louis E. Clark 
Langley Research Center 

SUMMARY 

A description, i n i t i a l  ca l ibra t ion  information, and d i f fuse r  development 
a re  presented f o r  t he  Langley 12-inch hypersonic ceramic-heated tunnel. This 
f a c i l i t y  i s  a f r ee - j e t  wind tunnel  u t i l i z i n g  a pebble-bed heat exchanger t o  
provide condensation-free flow at  a Mach number of 13.6. 

P i t o t  pressure surveys have shown t h a t  the conical nozzle produces a flow 
sa t i s f ac to ry  f o r  many types of t e s t i n g  over a range of stagnation pressure from 
60 ps i a  t o  615 ps i a  and at  stagnation temperatures from 2460O R t o  3750° R. 
The uniform core of the  12-inch-diameter nozzle decreased from 7 inches i n  
diameter a t  615 ps i a  t o  5.5 inches at 65 ps ia .  
decreased from 0.13 per inch  a t  615 ps i a  t o  0.07 per inch at 80 psia.  
temperature measurements ind ica te  a maximum t o t a l  temperature of 3750' R. 
Total-temperature surveys showed the  core of uniform temperature t o  be smaller 
than the  Mach number core and s l i g h t l y  asymmetric. 

The a x i a l  Mach number gradient 
Total- 

The tunnel airstream had a s m a l l  amount of ceramic-dust contamination 
which should be ins igni f icant  f o r  most t e s t s .  

Tunnel pressure recoveries with r e l a t ive ly  la rge  models i n s t a l l e d  
decreased from 60 t o  65 percent of normal shock recovery t o  33 t o  45 percent 
as  the stagnation pressure w a s  decreased from 615 ps i a  t o  80 psia .  The maximum 
s i z e  of t he  model which could be operated was found t o  decrease with stagnation 
pressure from a 5-inch-diameter 600 cone t o  a 4-inch-diameter 60° cone. 

INTRODUCTION 

The many new aerodynamic and heat- t ransfer  problems which have accompanied 
t h e  f l i g h t  of b a l l i s t i c  missiles,  hypersonic g l iders ,  and s a t e l l i t e  vehicles at 
hypersonic speeds and at high a l t i t u d e s  under low Reynolds number conditions 
have created a need f o r  new types of t e s t  f a c i l i t i e s .  These problems have been 
invest igated at high Mach numbers i n  helium tunnels (ref. l), i n  a i r  a t  Mach 
numbers from about 5 t o  9 ( r e f .  2), and i n  shock tunnels at  high Mach numbers 
and high stagnation temperatures but with very short  t e s t i n g  times ( r e f .  3 ) .  
Few high Mach number, low Reynolds number tunnels using air  and having rela-  
t i v e l y  long t e s t  times have been avai lable  f o r  studying these problems. 
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The simulation of f l i g h t  at high ve loc i t i e s  requires high stagnation 
enthalpies, whereas considerably less enthalpy i s  needed t o  avoid t h e  condensa- 
t i o n  of air  which may occur when a i r  i s  expanded t o  high Mach numbers. 
sources have not been avai lable  t o  provide enthalpies which would duplicate 
f l i g h t  values a t  high ve loc i t ies ,  but with ex is t ing  pebble-bedaheater technol- 
ogy su f f i c i en t  enthalpy can be obtained t o  avoid the  condensation of air  at a 
Mach number of 14. Therefore, a pebble-bed-heated f a c i l i t y  ( the Langley 
12-inch hypersonic ceramic-heated tunnel) w a s  designed t o  study these new 
flight problems by providing condensation-free, high Mach number, low Reynolds 
number simulation. Since t h e  f l i g h t  enthalpy w a s  not duplicated, t he  tunnel 
a i r  veloci ty  w a s  about one-half t h e  f l i g h t  value and t h e  real-gas e f f ec t s  
associated with t h e  f l i g h t  enthalpy were not simulated. This f a c i l i t y  i s  a 
blowdown f r ee - j e t  wind tunnel u t i l i z i n g  a conical nozzle. 

H e a t  

When t h i s  wind tunnel  w a s  designed, many aspects of t h e  operation and per- 
formance of tunnel  components at t h e  proposed Mach number and Reynolds numbers 
were generally unknown or were t h e  subject of exploratory investigations.  
Typical areas i n  which information was lacking were t h e  range of stagnation 
conditions over which t h e  conical nozzle would provide sa t i s fac tory  flow, 
nozzle boundary-layer growth with Reynolds number, d i f fuse r  performance at high 
Mach numbers and over a range of Reynolds numbers, d i f fuse r  blockage charac- 
t e r i s t i c s  over a range of Reynolds numbers, air  liquefaction, and so for th .  
This report  presents a descr ipt ion of t he  f a c i l i t y ,  results of a tes t  program 
t o  obtain operation and performance character is t ics ,  and i n i t i a l  ca l ibra t ion  
data.  

SYMBOLS 

D 

h 

H t  

H W  

2 

M 

Pa0 

Pe 

PC 

P t , l  

diame t er  

hea t - t ransfer  coeff ic ient  

t o t a l  enthalpy 

enthalpy at t h e  w a l l  

d is tance from nozzle throa t  t o  e x i t  

free-stream Mach number 

free-stream s t a t i c  pressure 

pressure at  d i f fuser  e x i t  

pressure i n  free- j e t  chamber 

t o t a l  pressure upstream of normal shock 
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t o t a l  pressure behind normal shock 

t o t a l  pressure behind normal shock on nozzle center l i n e  

free-stream dynamic pressure 

nozzle throa t  radius 

model radius 

free-stream Reynolds number 

free-stream Reynolds nunber based on distance from nozzle throat  t o  
e x i t  

free-stream s t a t i c  temperature 

stagnation temperature 

stagnation temperature on nozzle center l i n e  

free-stream veloci ty  

distance from nozzle exi t ,  posi t ive downstream 

boundary-layer thickness 

boundary-layer displacement thickness 

nozzle divergence half-angle 

mean f r e e  path behind normal shock 

free-stream density 

hypersonic viscous-interaction parameter, M3 

b/inch 

DESCRIPTION AND OPERATION OF 12-IIQCH HYPERSONIC 

CERAMIC-" m E L  

Description of Major Components 

The Langley 12-inch hypersonic ceramic-heated tunnel  (HCFlT) i s  a blowdown 
wind tunnel  with a f r ee - j e t  t e s t  section. Figure 1 shows t h e  overa l l  layout 
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and components of t h e  f a c i l i t y  including t h e  pebble-bed heater, nozzle, f ree-  [ 
j e t  t es t  section, diffuser ,  and af tercooler .  During a t e s t  air  enters  t he  
pebble-bed hea ter  through the  bottom and i s  heated t o  t h e  desired stagnation 
temperature when passing through t h e  pebble bed. 
hypersonic Mach numbers i n  t h e  conical nozzle and enters  t h e  free-jet t e s t  sec- 
t i o n  after which it passes through t h e  d i f fuse r  and af te rcooler  i n to  t h e  
vacuum sphere. 

The air  i s  then expanded t o  

Figure 2 i s  a simplified cross-sectional view of t h e  pebble-bed heater .  
The act ive port ion of t h e  heater  i s  t h e  pebb.le bed which i s  8 inches i n  diam- 
eter and 92 inches long and i s  m a d e  up of 3/8-inch-diameter spherical  zirconia 
pebbles. The bed i s  contained i n  a l aye r  of dense zirconia  f i r e  br ick sur- 
rounded by two layers of zirconia i n s u l a t i n g  br ick t o  reduce heat losses  and 
t o  maintain t h e  s t e e l  heater  pressure vesse l  at safe temperatures. The bed i s  
heated p r io r  t o  a tes t  by a propane burner located i n  t h e  flange on the  top  of 
t h e  pressure vessel .  The products of combustion pass through t h e  bed and are 
vented t o  t h e  atmosphere by an exhaust l i n e  at the  bottom of t h e  heater .  The 
burner uses a mixture of a i r  and propane or air, propane, and oxygen t o  obtain 
temperatures up t o  approximately 41000 F i n  t h e  top  of t h e  pebble bed. Ther- 
mocouples located throughout t he  heater  are used t o  monitor t he  bed and heater  
s h e l l  during t h e  heating cycle. A quartz window located i n  t h e  top flange i s  
used with an op t i ca l  pyrometer t o  monitor t h e  temperature of t he  top  of t h e  
pebble bed during t h e  heating cycle. Water cooling i s  provided f o r  t h e  burner 
and several  other  heater  assemblies. It has not been necessary t o  water cool 
t h e  pressure vesse l  s ince convection and radiat ion maintain t h e  s h e l l  at rela- 
t i v e l y  low temperatures. Equipment i s  i n s t a l l e d  which permits t h e  accurate 
s e t t i n g  of t h e  oxygen, air, and propane flows t o  t he  burner. Automatic cut- 
o f fs  and warning systems are ins t a l l ed  t o  permit continuous operation of t he  
hea ter  without attendants.  

Figure 3 shows a simplified cross-sectional view of t h e  nozzle, tes t  sec- 
t ion,  and d i f fuser .  The nozzle i s  conical with a t o t a l  divergence angle of 
16O. The nozzle throa t  diameter i s  0.2 inch, t h e  ex i t  diameter i s  1 2  inches, 
and t h e  dis tance from throa t  t o  ex i t  i s  42 inches. The r a t i o  of t he  nozzle 
e x i t  area t o  t h e  throa t  area i s  3600. 
water system when the  heater  i s  id l ing  or being f i r e d  f o r  a test  and cooled by 
a separate high-pressure water system during a tes t .  
can be varied i n  length up t o  about 12  inches depending on the  d i f fuser  con- 
f igurat ion.  The chamber surrounding the  f r ee - j e t  t es t  sect ion i s  constructed 
of s t e e l  and has 10-inch-diameter plate-glass windows of op t ica l  qua l i ty  on t h e  
s ides  f o r  schlieren, shadowgraph, o r  camera coverage. Models are inser ted with 
a ro t  ary-arm mechanism. Pressure-tube, thermocouple, and e l e c t r i c a l  conne c- 
t i o n s  a re  provided i n  t h e  model inser t ion  bay. 
can be run outside t h e  t e s t  chamber without excessive lengths, or pressure 
gages can be located within t h e  model inser t ion  bay. 
water cooled and consis ts  of a scoop which captures t h e  free j e t ,  t h e  fixed 
second minimum, and a subsonic d i f fuser  section. The d i f fuser  i s  constructed 
of ro l led  s t e e l  p l a t e s  and i s  connected a t  t h e  e x i t  t o  an af tercooler  composed 
of a l a rge  number of cooling tubes through which water i s  circulated.  The 
a f te rcooler  cools t he  a i r  before it enters  t h e  12,000-cubic-foot vacuum sphere 
and thereby maximum t e s t i n g  t i m e  i s  provided. A valve between the  af tercooler  
and t h e  vacuum sphere i so l a t e s  these components. A separate l i n e  connects t h e  

The nozzle i s  cooled with a low-pressure 

The f r ee - j e t  t e s t  sect ion 

If desirable,  pressure tubing 

The f ixed d i f fuse r  i s  not 
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t e s t  chamber t o  the  vacuum pumps ( f i g .  1) and t h i s  l i n e  i s  used when it i s  
necessary t o  pump t h e  tes t  sect ion independently of t h e  sphere. The present 
pumping system i s  capable of evacuating t h e  sphere t o  100 microns H g  i n  about 
1 hour a f t e r  a t e s t .  

Operating Method 

Since t h e  burner i s  operated continuously at a heating rate which main- 
t a i n s  t h e  top  of t h e  pebble bed at  approximately 2 8 0 0 ~  F, the bed can be heated 
t o  a m a x i m u m  temperature of 41000 F f o r  a tes t  i n  1 hour. 
rate i s  increased t o  a se t t i ng  which gives t h e  desired temperature, and during 
the  heating period t h e  temperature of t h e  top  of t h e  pebble bed i s  monitored 
with an op t i ca l  pyrometer while t h e  temperature of t h e  bottom of t h e  bed i s  
monitored with thermocouples. During t h e  heating period, a conical s i l icon-  
rubber’plug ( f i g .  4 )  i s  inser ted i n  t h e  nozzle j u s t  downstream from t h e  throa t  
and held i n  place by a rod t o  prevent products of combustion from entering t h e  
t e s t  section. This plug seals the  nozzle e f fec t ive ly  and allows t h e  tes t  sec- 
t i o n  t o  be pumped as low as 10 microns Hg by the  vacuum pump f o r  leak checking, 
gage calibration, and outgassing of systems p r i o r  t o  a tes t .  

The burner heating 

When t h e  desired temperature d i s t r ibu t ion  i s  established i n  the  bed, t h e  
burner i s  shut off and the  heater  vessel  i s  prepared f o r  a t e s t  by closing all 
exhaust valves and the  combustion air and propane valves and removing the  
s i l i c o n  rubber plug from t h e  nozzle. 
have been closed, t he  t e s t  sect ion i s  at atmospheric pressure, and the  vacuum 
sphere has been pumped down t o  100 microns Hg. 
sphere i s  i so la ted  from t h e  tes t  sect ion by a valve between t h e  af tercooler  
and sphere. The t e s t  sect ion i s  now pumped t o  20 millimeters Hg (by using the  
separate l i n e  t o  the  vacuum pumps) at which time pressurizat ion of t he  heater  
i s  s ta r ted .  The airflow i s  controlled during pressurizat ion so  t h a t  t he  pres- 
sure d i f f e r e n t i a l  across t h e  bed does not exceed 75 percent of the  d i f f e r e n t i a l  
pressure required t o  l i f t  t h e  bed; an automatic pressure switch shuts the  a i r  
supply valve i f  t h i s  d i f f e r e n t i a l  pressure i s  exceeded. During pressurization 
a i r  f l o w s  through t h e  nozzle i n t o  the  t e s t  section and i s  pumped out through 
the  separate l i n e  t o  the  vacuum pump. 
sect ion pressure below about 100 millimeters H g  during the  40 seconds required 
t o  pressurize t h e  heater  vessel  t o  615 psia. 
pressure i s  reached, hypersonic flow i s  established by opening the  valve t o  
t h e  sphere which lowers t h e  pressure downstream of t h e  d i f fuser  t o  t h e  sphere 
pressure. 
of t he  nozzle t o  es tab l i sh  t h e  pressure r a t i o  required f o r  hypersonic flow. 
The hot air  which flows through t h e  t e s t  sect ion during pressurizat ion does 
not s ign i f icant ly  heat models and instrumentation in s t a l l ed  i n  t h e  model 
r e t r ac t ion  bay. 
with t h e  rotary-arm mechanism. 
vacuum sphere reaches t h e  pressure at which flow breakdown occurs. Upon com- 
p le t ion  of a tes t  t h e  air supply valve i s  closed and t h e  air  i n  t h e  heater  i s  
bled off  through a l i n e  at t h e  bottom of the heater. 

A t  t h i s  time all valves t o  t h e  heater  

As  mentioned previously, t h e  

The vacuum pump maintains the  test- 

When t h e  desired stagnation 

This method of operation avoids t h e  need f o r  a hot valve upstream 

After hypersonic flow i s  established, t h e  model i s  inser ted 
The model i s  normally re t rac ted  before t h e  
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INSTRUMENTS AND C A L I B W I O N  PR0CE;WRE 

Total-Pre ssure Surveys 

The total-pressure surveys were m a d e  with t h e  rake shown i n  f igure  5(a), 
which extended 2 inches across t h e  j e t  center l i n e .  A t y p i c a l  locat ion of t h e  
rake with respect t o  t h e  nozzle e x i t  i s  shown i n  f igu re  3 .  Rake tubes were con- 
s t ructed i n  accordance with reference 4 t o  avoid e r ro r s  a r i s ing  from low 
Reynolds number e f fec ts .  
ure pressures. An e l e c t r i c  solenoid operated valve w a s  i n s t a l l ed  i n  each rake 
l i n e  between t h e  impact tube and the  pressure gage. These valves are closed 
when t h e  t e s t  sect ion i s  bled t o  atmospheric pressure t o  avoid gage zero s h i f t .  
The valves a re  a lso used t o  improve t h e  time response of t he  system by se t t i ng  
t h e  pressure i n  t h e  gage near t he  ant ic ipated pressure and closing the  valves 
u n t i l  t h e  rake i s  inser ted in to  the  stream. The rake w a s  l e f t  i n  the  stream 
u n t i l  flow breakdown which occurred a f t e r  approximately 50 seconds. 
pressure surveys were m a d e  a t  stagnation pressures of 65, 115, 315, and 615 ps i a  
and a t  stagnation temperatures of 2460O R, 3240° R, and 3750' R. Pressure gages 
were cal ibrated before each tes t  by using a McLeod gage as a primary standard 
with 20 and 50 millimeters Hg d i a l  indicat ing absolute pressure gages as sec- 
ondary standards. 

S t r a in  gage type of pressure gages were used t o  meas- 

P i to t -  

Tot al-Tempe r a ture  Measurement s 

The problem of  accurately measuring t h e  a i r  stagnation temperature i n  t h i s  
low-density hypersonic f a c i l i t y  has proved qui te  d i f f i c u l t  and has resul ted i n  
t h e  use of several  t e s t  approaches. I n  attempting a d i r e c t  measurement of t o t a l  
temperature, two locat ions f o r  thermocouple probes were u t i l i zed ;  f irst ,  a num- 
be r  of thermocouple probe designs were used f o r  d i r ec t  measurements i n  the  t e s t  
sect ion and second, a special  probe was designed f o r  measurements i n  t h e  set- 
t l i n g  chamber before t h e  flow entered the  nozzle. The settling-chamber probe 
had a water-cooled support section and w a s  inser ted in to  t h e  s e t t l i n g  chamber 
before a t e s t  through an access hole i n  the  heater  s h e l l  which i s  normally 
sealed with a water-cooled plug. The probe w a s  located on t h e  center l i n e  
4 inches from t h e  nozzle entrance, as shown i n  f igure  2. 
minimize losses  due t o  conduction and radiat ion and u t i l i z e d  an iridium/iridium- 
rhodium thermocouple. Total  temperatures were measured i n  t h e  t e s t  sect ion by 
a var ie ty  of probes including radiat ion shielded designs with up t o  three  radia- 
t i o n  shields .  Two typ ica l  total-temperature-probe designs a re  shown i n  f ig -  
ures  ? (e)  and 5(d) .  
couple junction reaches an equilibrium temperature before the  shield temperature 
increases s ign i f icant ly .  This probe s implif ies  t he  calculat ion of radiat ion 
e r rors .  
are constructed of platinum-rhodium and t h e  probe i s  designed t o  permit t h e  
inner shield t o  approach t h e  recovery temperature; thus the  radiat ion correction 
i s  eliminated or subs tan t ia l ly  reduced. 

It w a s  designed t o  

Figure 5(c)  shows a cold-shield probe i n  which the  thermo- 

Figure 5 (d )  i s  a typ ica l  t r i p l e  radiat ion shield probe. The shields  

In  addition t o  t h e  measurement of t h e  absolute temperature on the  center 
l i ne ,  t h e  r a d i a l  d i s t r ibu t ion  of temperature w a s  determined by use of the  rake 
shown i n  figure 5(b),  which extended 2 inches across t h e  je t  center l i ne .  The 
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thermocouple probes on the  rake consist  of unshielded No. 40 gage platinum- 
rhodium wires i n  cross flow supported by No. 24 gage wires. 
t h e  boundary layer  a re  considered only qua l i ta t ive ly  correct .  Temperature sur- 
veys were made at a stagnation temperature of 32400 R at  stagnation pressures 
of 65, 115, 315, and 615 ps i a  and at stagnation temperatures of 2460O R and 
3750° R at a stagnation pressure of 615 ps ia .  

Temperatures i n  

Schlieren Studies 

I n  t h e  low s t a t i c  pressure range of t h i s  f a c i l i t y  - t h a t  is, from 15 t o  
120 microns Hg - it w a s  expected t h a t  t he  schl ieren method would be approaching 
t h e  l i m i t  of i t s  a b i l i t y .  However, s tudies  made with both single- and double- 
pass systems obtained photographs of t he  bow shock f o r  r e l a t ive ly  la rge  blunt 
axisymmetric models and r e l a t ive ly  c l ea r  shocks f o r  two-dimensional models. 
double-pass system enabled photographs of bow shocks t o  be taken at lower stag- 
nation pressures. I n  general, r e l a t ive ly  poor schl ieren photographs w e r e  
obtained and consequently they have not been reproduced i n  t h i s  report .  

The 

Free-Jet Chamber Pressure 

The pressure i n  the  chamber surrounding the  f r e e  j e t  w a s  measured during 
t e s t s  with la rge  blockage models. 
of 0 t o  1 millimeter Hg were used f o r  these measurements and the  gages were 
cal ibrated frequently during the  t e s t s .  
t h e  f ree- je t  chamber by t h e  use of quick-connect couplings, and due t o  the  
absence of connecting tubing very good time response w a s  obtained. 

Thermal conductivity gages w i t h  a range 

The gages were in s t a l l ed  d i r ec t ly  t o  

FACTORS DETERMINING ACCURACY OF CALIBRATION 

Vibrational Nonequilibrium Flow 

The hypersonic low-density flow which ex i s t s  i n  t h i s  wind tunnel creates  
conditions under which thermodynamic nonequilibrium and frozen flow may ex i s t .  
I n  the stagnation-temperature range from 2400O R t o  3700° R nonequilibrium 
e f fec t s  a r e  due t o  t h e  v ibra t iona l  degree of freedom inasmuch as these tempera- 
t u re s  are not high enough t o  cause dissociat ion of air .  The rapid expansion 
of aLr i n  t h e  nozzle may cause the  v ibra t iona l  energy mode t o  deviate from 
thermodynamic equi l ib  rim. 

Values of stream parameters at t h e  t e s t  sect ion were calculated f o r  flow 
frozen at t h e  stagnation chamber and f o r  flow i n  equilibrium at a stagnation 
pressure of 615 p i a  and stagnation temperature of 36000 R pt 2/pt being 

t h e  same f o r  both flows). Nonequilibrium values f a l l  between these two flow 
extremes. The results a re  presented i n  the  following table:  

L 9 
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Parameter 
~ 

M e  e . .  

P,, microns Hg 
T,, OR . . . .  
p, slug/cu ft . 
R, per f t  . . .  
q, lb/sq f t  . . 
V, f t / s ec  . . .  

. . . . . . . . . . . . . . .  . . . . . . . . . . . . . . .  . . . . . . . . . . . . . . .  . . . . . . . . . . . . . . .  . . . . . . . . . . . . . . .  . . . . . . . . . . . . . . .  . . . . . . . . . . . . . . .  
~~~ 

Frozen 
flow 

13.62 
91 
95 

1.57 x 10-6 
135,000 

32.8 
64 70 

~ Equilibrium 
flow 

12-93 
100 
116 

1.39 x 10-6 
111,000 

33.2 
6830 

i s  a cor- P t  , I rn  
t a n  a 

The theo re t i ca l  work of reference 5 shows t h a t  t h e  product 

relating group f o r  v ibra t iona l  nonequilibrium flow. The values of t h i s  product 
range from 43.6 t o  436 lb/ in .  f o r  t h e  present tests. For these values, refer- 
ence 5 indicates  t h a t  t h e  flow properties a re  very close t o  the  frozen values. 
The percentage difference between the nonequilibrium values given by ref  er- 
ence 5 and frozen-flow values at a stagnation temperature of 36000 R and stag- 
nation pressure of 615 ps i a  i s  as follows: 

M . . . . . .  -2 percent 
P, . . . . .  +2 percent 
T, . . . . .  +6 percent 
p . . . . . .  -4 percent 

q . . . . . .  0 percent 
R . . . . . .  -3 percent 

V . . . . . .  +2 percent 

The difference between t h e  nonequilibrium values and frozen-flow values would 
be even smaller a t  lower stagnation pressures and temperatures. 
view of t h e  r e l a t ive ly  s m a l l  departure from frozen flow indicated by refer- 
ence 5 t h e  nozzle has been cal ibrated by using the  r a t i o  

assuming isentropic  flow frozen at the  stagnation chamber. 

Therefore, i n  

pt */pt and 
7 7 

Flow-Parameter Errors Due t o  Pressure-Measurement Inaccuracies 

A consideration of t he  fac tors  affect ing the  accuracy of the  measurement 
and p indicates  t h a t  t he  r a t i o  pt 2/pt i s  accurate t o  within 

The e r ro r s  i n  t h e  free-stream param- 
a t  a stagnation pressure of 615 ps ia  

Of P t , l  t , 2  Y ,  J 

?4 percent f o r  t h e  most unfavorable case. 
e t e r s  f o r  a 4-percent e r r o r  i n  pt,2/pt,l 

and a stagnation temperature of 36000 R are as follows: 
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M . . . . . .  +1 percent 
p, . . . . .  -7 percent 
T, . . . . .  -1 percent 
p . . . . . .  -4 percent 
R . . . . . .  -5 percent 
q . . . . . .  -4 percent 
V . . . . . .  0 percent 

Flow-Parameter Errors Due t o  Totdl-Temperature-Measurement Inaccuracies 

The t e s t  methods and techniques used t o  measure t o t a l  temperature are 
described i n  the  sect ion e n t i t l e d  "Total-Temperature Measurements" where it i s  
concluded tha t ,  i f  heat l o s s  downstream of t he  settling-chamber thermocouple 
probe i s  negligible,  t he  accuracy of t he  total-temperature measurement i s  within 
k5 percent. Since t h e  flow is  believed t o  be very close t o  frozen, t h e  e r ro r  
i n  t o t a l  temperature w i l l  have a negl igible  e f f ec t  on t h e  Mach number, s t a t i c  
pressure, and dynamic pressure. 
e t e r s  f o r  a +?-percent e r ro r  i n  t o t a l  temperature a re  as follows: 

The e r rors  i n  t h e  other  free-stream param- 

T, . . . . .  k5 percent 
p . . . . . .  k5 percent 
R . . . . . .  k7 percent 
V . . . . .  f2.5 percent 

Overall Accuracy 

Isentropic  flow w a s  assumed i n  t h e  ca l ibra t ion  and it i s  possible t h a t  
viscous and other  e f f ec t s  may cause some degree of nonisentropic flow although 
t h i s  has not been detected. The water vapor produced during t h e  heating cycle 
by the  combustion of propane gas i s  not believed t o  have had any s igni f icant  
influence on the  data.  The heater  i s  purged with supply air  with a dewpoint 
below -850 F during t h e  pressurizat ion process and water-vapor condensation has 
not been detected i n  any measurements. 

For t he  most unfavorable case, t h e  deviation of t h e  flow from the  frozen 
condition and t h e  e r ro r s  i n  t h e  total-temperature and total-pressure measure- 
ments give t h e  following e r ro r s  i n  t h e  stream parameters: 

M . . . . .  +1 percent 
p, . . . .  +5 percent 
T ,  . . . -10 percent 
p . . . . .  +l3 percent 
R . . . . .  +l5 percent 
q . . . . .  +4 percent 
V . . . . .  -5 percent 
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FLOW SURVEYS 

Effect of Varying Stagnation Pressure on Nozzle Flow Parameters 

Figure 6 shows t h e  var ia t ion  with stagnation pressure of t h e  r a t i o  

pt,2/pt.,1 
t h e  figure,  a l a rge  boundary-layer growth reduced the  Mach number from the  
frozen inv isc id  value of 14.87 t o  13.62 a t  615 ps ia .  
sure  w a s  reduced from 615 ps i a  t o  63 p s i a  t h e  boundary-layer growth fu r the r  
reduced the  Mach number from 13.62 t o  12.54 with t h e  most rapid decrease occur- 
r ing below 300 psia.  
period of t i m e  and repeated i n  pitot-pressure r a t i o  t o  within +k percent and 
Mach number %o within k l  percent. For Mach numbers on t h e  order of 30, refer-  
ence 6 reported a decrease i n  Mach number with a reduction i n  pressure, as w a s  
found i n  the  present t e s t s ,  and a l so  reported a change i n  Mach number with a 
change i n  model s i z e  and geometry. The var ia t ion  with model s i ze  and geometry 
w a s  not detected i n  t h e  present t e s t s  f o r  Mach numbers i n  t h e  range from 11 t o  
14 except t h a t  t he  free-jet chamber pressure was found t o  a f f ec t  the  p i to t -  
pressure d i s t r ibu t ion  a t  the  edge of t he  core f o r  models with l a rge  blockage, 
as i s  discussed i n  t h e  sect ion e n t i t l e d  '?Tunnel Blockage Characterist ics." 

and the  Mach number on t h e  nozzle center l i ne .  As  can be noted from 

A s  t h e  stagnation pres- 

The da ta  shown were taken during t e s t s  spaced over a 

Figure 7 presents l a t e r a l  total-pressure p ro f i l e s  and Mach number d is t r ibu-  
t i ons  f o r  stagnation pressures of 615, 315, 115, and 63 ps ia  at  a stagnation 
temperature of 32400 R. 
existence of a cent ra l  core which decreases from 7 inches i n  diameter a t  
615 ps ia  t o  about 5.5 inches at  65 psia .  
a r e  considered only qua l i ta t ive ly  correct because of t h e  s teep gradients encoun- 
te red  i n  t h i s  region. The var ia t ions  i n  p i t o t  pressure and Mach number across 
t h e  core f a l l  within +6 percent and f l .5  percent, respectively.  
at 65 ps i a  appears t o  have a s l i g h t  asymmetry - an increase i n  pressure t o  the  
l e f t  edge of t h e  core. 

The p ro f i l e s  at  a l l  stagnation pressures show the  

P i t o t  pressures i n  the  boundary layer  

The p ro f i l e  

The l a t e r a l  d i s t r ibu t ion  of t o t a l  temperature i n  terms of t h e  f r ac t ion  of 
t he  value a t  t h e  center l i n e  i s  shown i n  f igure  8(a) f o r  various stagnation 
pressures at  a stagnation temperature of 3240' R .  Shown i n  f igure  8 (b )  i s  the  
r a t i o  of p i t o t  pressure a t  l a t e r a l  locat ions t o  p i t o t  pressure on t h e  center 
l i n e .  The uniform temperature core i s  not as la rge  as the  pitot-pressure core 
and i s  asymmetric, with a rapid drop on t h e  right-hand s ide of t h e  d is t r ibu-  
t i ons  shown. The temperature core does not change s igni f icant ly  with stagna- 
t i o n  pressure and a 3-inch core which i s  centered about 1/2 inch off t h e  nozzle 
center l i n e  has a l a t e r a l  var ia t ion  i n  temperature of 1.5 percent over t he  
range of stagnation pressure. 

The a x i a l  Mach number gradients f o r  various stagnation pressures a re  shown 
i n  f igure  9. A contouring e f f ec t  of t h e  boundary-layer growth i s  evident as  
t h e  gradient decreased from 0.13 per  inch at  615 ps i a  t o  0.07 per inch at 
80 psia.  

The average value of t he  p i t o t  pressure d id  not change over t h e  30-second 
tes t  period f o r  tes ts  over t h e  range of stagnation pressure. Apparently the  
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d i f fuse r  second-minimum sect ion i s  suf f ic ien t ly  long t o  prevent t he  increasing 
back pressure from feeding through t h e  boundary layer  and affect ing the  t e s t  
stream. 

Effect of Varying Stagnation Temperature on Nozzle Flow Parameters 

Figure 10 shows a comparison of pt 2/pt on t h e  center l i n e  measured 
9 J 

at stagnation temperatures of 2460O R and 37500 R with 
3240° R f o r  a range of stagnation pressures. The da ta  taken a t  2460O R and 
3750° R f a l l  within t h e  s c a t t e r  of t h e  da ta  taken a t  3240° R, which indicates  
t h a t  any Reynolds number e f f ec t  due t o  t h e  change i n  stagnation temperature 
w a s  within the  s c a t t e r  of t h e  data.  Lateral  pitot-pressure prof i les  measured 
a t  2460O R and 3750° R a l s o  f a l l  within t h e  data  s c a t t e r  of t h e  prof i les  meas- 
ured a t  3240° R over t h e  range of stagnation pressures.  

pt,2/pt,l measured a t  

-. 
Surveys t o  determine t h e  d i s t r ibu t ion  of t o t a l  temperature taken a t  

615 ps ia  and stagnation temperatures of 2460O R and 3750° R show the  same dis -  
t r i b u t i o n  as those measured at 32400 R shown i n  f igure  8. 
d is t r ibu t ions  at  24600 R and 3750° R were not measured a t  other stagnation 
pressures.  

Total temperature 

P i t o t  pressures measured a t  2460' R do not show any ef fec t  of a i r  conden- 
sation; t h i s  i s  i n  agreement with t h e  experimental r e s u l t s  of reference 7 where 
it w a s  found t h a t  condensation w a s  delayed because of an apparent supersatura- 
t ion .  The tunnel operating range i s  shown i n  f igure  11 taken from reference 7. 
Also included i n  t h e  f igure  a r e  t h e  a i r  saturat ion curve and the  experimentally 
determined curve f o r  t h e  onset of a i r  condensation i n  hypersonic wind tunnels. 
Most of t h e  HCHT operating range l i e s  t o  t h e  r igh t  of t he  saturat ion curve for 
air  and consequently well  within the  region where no condensation has been 
detected by other invest igators .  The data  taken at  615 ps ia  and 24600 R cor- 
responds t o  t h e  point shown i n  t h e  f igure  a t  650 R and 0.091 m Hg abs. A 
maximum supersaturation of about 120 R f o r  t he  present t e s t s  occurred at t h i s  
point.  A s  shown, t h e  condensation point determined by other invest igators  
occurred a t  a supersaturation of 390 R a t  t h i s  pressure.  

Ceramic Dust Contamination of Airstream 

Some ceramic-pebble-bed-heated tunnels have suffered from ra ther  severe 
The HCHT contamination of t h e  airstream by ceramic dust pa r t i c l e s  ( r e f .  8) .  

has been found t o  have only a s m a l l  amount of dust contamination. S l igh t ly  
I 
2 

enlarged photographs of a polished 2- -inch-diameter s t e e l  hemisphere cylinder 

before and a f t e r  35 seconds of t es t  time give an indicat ion of t he  dust con- 
tamination (see f i g .  12) .  
due f o r  year ly  maintenance service when dust contamination i s  most severe. 
The shiny disks  on t h e  model a re  re f lec t ions  of t h e  l i g h t s  used f o r  illumina- 
t ion .  Profilometer measurements of t h e  model surface before t h e  t e s t  were 
3 microinches rms average, whereas measurements taken a f t e r  t h e  t e s t  were from 

This t e s t  was made shor t ly  before .the heater was 
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te 

R 
\*F 3 microinches rms average f o r  unpitted surfaces t o  25 microinches for t h e  

l a r g e s t  p i t s ,  with most p i t s  giving a reading from 10 t o  15 microinches rms 
average. As can be seen there  a re  r e l a t ive ly  few la rge  p i t s .  This amount of 
dust contamination w i l l  have an ins igni f icant  influence f o r  most experiments. 
The s m a l l  amount of ceramic p a r t i c l e  contamination i s  a t t r i bu ted  t o  the  low 
flow rate of air  through t h e  bed and t h e  s ide  mounting of t h e  nozzle on the  
hea ter  vessel .  

Variation of Boundary-Layer Displacement Thickness 

and Boundary-Layer Thickness 

The var ia t ion  i n  boundary-layer displacement thickness a t  the  nozzle exit 
with stagnation pressure at a stagnation temperature of 32400 R i s  given i n  
f igu re  l3(a).  
r a t i o  corresponding t o  t h e  Mach number determined from t h e  r a t i o  pt,2/pt,1 
t h e  nozzle exit. 
t o  2.15 inches a t  65 psia .  

Displacement thickness w a s  obtained from computation of t h e  area 
at 

The displacement thickness var ies  from 1.4 inches a t  615 ps ia  

Due t o  the  d i f f i c u l t y  i n  theore t ica l ly  determining the  growth of turbulent 
hypersonic boundary layers,  semiempirical formulas have been developed by 
several  invest igators  t o  correlate  experimental data .  Shown i n  t h e  following 
t a b l e  a re  equations and t h e  conditions under which they have been found t o  suc- 
cessful ly  cor re la te  data: 

. . . ~  . .  - -. .. - ~. 

Equations 

Boundary-layer displacement thickness 
- . . . - - . . - 

105 to 107 

106 to 107 

103 to 105 
.. . . . . .~ - 

Boundary-layer thickness 

6 @. 824 - = 0.066 
2 R2 0.166 

~- . . 

8 to 18 

g t o  12 

11 t o  15 

- .- 

Hw/Ht I Ref. 

0.1 

- 

=o .27 

-0.15 
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11 
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Values of displacement thickness derived by these semiempirical equations 
a r e  shown i n  f igure  l3(a).  The equation from reference 9 predicts  t h e  thick- 
ness very w e l l  a t  615 ps i a  and predicts  s l i g h t l y  grea te r  thicknesses a t  lower 
stagnation pressures. The equation from reference 10 gives values i n  fair  
agreement with measured values at 615 ps i a  (which represents Reynolds numbers 
at  t h e  low end of t h e  range f o r  which t h i s  equation w a s  found t o  cor re la te  
da ta )  but predicts  s m a l l e r  thicknesses a t  t h e  lower pressures. The equation 
from reference 11 predicts  t h e  t rend  qui te  wel l  but gives values about twice 
t h e  measured values. The equation from reference 11 is  not based on experi- 
mental data  but w a s  found t o  cor re la te  boundary-layer displacement thicknesses 
which were computed by t h e  momentum in t eg ra l  method. The nozzles used i n  these 
calculations were considerably longer than t h e  nozzle i n  t h e  present tests. 

The var ia t ion  i n  boundary-layer thickness a t  the  nozzle e x i t  with stagna- 
t i o n  pressure at  a stagnation temperature of 3240° R i s  shown i n  f igure  l 3 ( b ) .  
The boundary-layer edge w a s  taken as t h e  point where pt ,2  dropped t o  99 per- 
cent of t he  average value across t h e  core. Precise boundary-layer thickness 
w a s  d i f f i c u l t  t o  determine because of t h e  r e l a t ive ly  wide spacing of t h e  survey 
tubes. 
t o  3.25 inches a t  65 psia .  
dicted by t h e  equation of reference 9. This equation gives fa i r  agreement over 
t h e  range of pressures, with about a 0.1 inch grea te r  thickness predicted a t  
615 ps i a  t o  about a 0.25 inch grea te r  thickness a t  65 psia.  

The boundary-layer thickness varied from about 2.5 inches a t  615 ps ia  
Also shown i s  t h e  boundary-layer thickness pre- 

TOTAL-TEDPERATTJRE MEASUREMENTS 

Typical r e s u l t s  of a se r i e s  of t e s t s  i n  which temperature measurements 
were made simultaneously i n  t h e  s e t t l i n g  chamber and i n  the  t e s t  sect ion a r e  
shown i n  f igure  14. 
couple probes i s  p lo t ted  as a function of t h e  temperature of the  top  of t h e  
pebble bed before a test ,  since t h e  temperature of t h e  top  of t he  bed i s  used 
along with other  measurements t o  determine when t h e  bed has been heated suf- 
f i c i e n t l y  t o  provide t h e  desired stagnation temperature. 
values obtained i n  the  t e s t  section were lower than those obtained i n  the  
s e t t l i n g  chamber. These values d i f f e r  by about 4500 R. 

The a i r  t o t a l  temperature determined from t h e  thermo- 

Total-temperature 

The probe i n  the  s e t t l i n g  chamber i s  located 4 inches from the  nozzle 
entrance as shown i n  f igure  2. 
f o r  example, at  t h e  nozzle throa t .  Measurements i n  s i m i l a r  nozzles have indi-  
cated t h a t  t he  l o s s  of heat i n  the  nozzle i s  s m a l l .  It i s  l i k e l y  t h a t  most of 
t h e  heat l o s t  i n  t h e  nozzle would be from t h e  boundary layer  and not from t h e  
cent ra l  core. It is, therefore,  believed t h a t  temperatures indicated by t h e  
probe i n  t h e  s e t t l i n g  chamber a re  t h e  correct  values although addi t ional  inves- 
t i g a t i o n  would be required t o  determine de f in i t e ly  t h a t  heat loss  downstream 
of t h e  probe i s  negligible.  

The air may lose  heat downstream of t h i s  point, 

The measurements taken with t h e  probe i n  t h e  settling chamber with t h e  
assumption t h a t  heat  l o s s  i n  t h e  nozzle i s  negl igible  are considered t o  be 
accurate t o  within 3 percent. On t h i s  bas i s  an extrapolation of t h e  



settling-chamber da ta  shown i n  f igure  14 indicates  a m a x i m u m  t o t a l  temperature 
of 3750° R. If there  i s  heat l o s s  downstream of t h e  s e t t l i n g  chamber, t h e  air  
temperature would f a l l  between t h e  settling-chamber and tes t -sect ion data.  

TUNNEZ BLOCKAGE CHARACTEBISTICS 

Model Capabili ty 

The performance of t he  f i n a l  d i f fuse r  f o r  t yp ica l  models over t he  range 
of stagnation conditions i s  summarized i n  f igu re  15. The r e l a t ive  performance 
of t h ree  d i f fuse r  configurations, t e s t e d  t o  obtain t h e  desired compromise 
between model capabi l i ty  and t e s t i n g  time, i s  given i n  t h e  appendix. 
shows t h e  reduction i n  the  m a x i m u m  s i ze  of cone, hemisphere, and f la t - face  
models which can be operated and the  reduction i n  d i f fuse r  pressure recovery 
with t h e  model i n  t h e  airstream as t h e  stagnation pressure i s  decreased. The 
flagged symbols i n  t h e  f igure  ind ica te  the  lowest pressure a t  which the  model 
could be operated ( t e s t s  were usual ly  made at 100 p s i  increments). 
stagnation pressures the  model could not be operated with any efficiency even 
when l a rge  pressure r a t i o s  were avai lable .  

Figure 15 

A t  lower 

A t  stagnation pressures from 500 t o  615 ps i a  the  tunnel would operate with 
hemisphere models up t o  4 inches i n  diameter, 600 cone models up t o  5 inches 
i n  diameter, and f l a t - f ace  models up t o  3 inches i n  diameter. The 5-inch- 
diameter 600 cone corresponds t o  a blockage a rea  (including s t r u t )  of 19 per- 
cent of t h e  nozzle e x i t  area and 55 percent of t h e  isentropic  core area at 
615 psia .  
normal shock recovery f o r  t h e  f la t - face  model t o  60 percent f o r  t h e  60° cone 
model. 

The pressure recovery f o r  these models varied from 55 percent of 

A s  shown i n  f igure  15 t h e  m a x i m u m  s i ze  model of any geometry which could 
be operated decreased with a reduction i n  stagnation pressure. 
example i s  the  600 cone models. 
from 600 t o  515 psia, whereas the  4-inch-diameter 600 cone could be operated 
from 600 t o  135 p i a .  
models t e s t e d  decreased from 60 t o  65 percent of normal shock recovery at 
615 ps i a  t o  35 t o  45 percent at 80 p s i a  as compared with clear-tunnel pressure 
recovery which varied from 80 percent of normal shock recovery at 600 ps i a  t o  
55 percent a t  65 ps ia .  

A t yp ica l  
The 5-inch-diameter 600 cone could be operated 

In  general, pressure recoveries f o r  t he  r e l a t ive ly  la rge  

It w a s  found t h a t  l a rge r  models could be t e s t e d  by s t a r t i ng  the  flow and 
inser t ing  t h e  model ra ther  than by attempting t o  start the  tunnel with t h e  
model i n  t h e  t es t  section. The 4-inch-diameter hemisphere w a s  marginal a t  
500 psia.  
t i o n  but frequently t h e  tunnel  could be operated by removing and reinser t ing 
t h e  model. 

A t  t h i s  pressure the  model might block t h e  flow on t h e  first inser-  
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Effect of Free-Jet Chamber Pressure on 

Lateral  Pitot-Pressure Distr ibut ion 

The operation of la rge  blockage models i n  the  HCH" results i n  increases 
of t h e  pressure i n  t h e  chamber surrounding t h e  f r e e  j e t  of up t o  four times 
t h e  free-stream s t a t i c  pressure. Since t h e  nozzle i s  operated i n  an over- 
expanded condition, a reversed conical shock i s  assumed t o  emanate from t h e  
region of t h e  nozzle l i p  and t ra i l  downstream. 
pressure difference between t h e  f r ee - j e t  chamber and t h e  free stream. An 
increase i n  chamber pressure requires a stronger shock system t o  support t h e  
pressure difference.  This shock i s  incl ined at a g rea t e r  angle t o  t h e  stream 
and tends t o  move toward t h e  stream center l i n e  where it may a f f ec t  t h e  p i to t -  
pressure d is t r ibu t ion .  

This shock system supports t he  

A s e r i e s  of t e s t s  of t h e  e f f ec t  of chamber pressure on l a t e r a l  p i to t -  
pressure p ro f i l e s  were made with a f la t  disk normal t o  the  flow mounted some 
distance behind t h e  pitot-pressure survey rake. Disks of variuus s izes  were 
used t o  produce t h e  desired changes i n  f ree- je t  chamber pressure. Figure 16 
shows the  e f f ec t  of various l eve l s  of f r ee - j e t  chamber pressure on t h e  l a t e r a l  
pitot-pressure d i s t r ibu t ion  f o r  a typ ica l  d i f fuser  configuration. A s  the  cham- 
be r  pressure i s  increased the  p i t o t  pressure a t  the  edge of t h e  core increases 
u n t i l  a t  a chamber pressure of 410 microns Hg an apparent increase i n  the  uni- 
form core has occurred, but t h i s  i s  ac tua l ly  nonisentropic flow caused by the  
presence of t h e  shock system. Further increases i n  chamber pressure cause the 
p i t o t  pressure a t  t h e  edge of t h e  core t o  increase t o  1- 1 t i m e s  the  center l i n e  
value. 2 

Figure 17 shows t h e  r e s u l t s  of a se r i e s  of t e s t s  made with the  f i n a l  d i f -  
fu se r  configuration over t h e  range of stagnation pressure a t  high chamber pres- 
sures typ ica l  of la rge  blockage models. 
free-stream s t a t i c  pressure did not a f f ec t  t he  uniform core at stagnation pres- 
sures from 615 t o  65 psia .  
w a s  not detected.  
center l i n e  a t  315 ps i a  t o  3 inches off t he  center l i n e  at  65 psia, it i s  
probable t h a t  t h e  shock i s  between these s t a t ions  a t  115 psia .  

Chamber pressures up t o  four  t i m e s  

A t  115 ps i a  t h e  region of increased p i t o t  pressure 
Since t h e  shock moves from t h e  posi t ion 4 inches off the  

These t e s t s  furnish some ins ight  i n to  t h e  operation of t h e  f r e e  j e t  and 
provide a bas is  f o r  estimating t h e  model s i ze  at  which adverse flow e f fec t s  
due t o  the  e f fec t  of f r ee - j e t  chamber pressure on t h e  shock system may occur. 
Since t h e  l a rges t  axisymmetric models which can be operated a t  each stagnation 
pressure w i l l  not be i n  t h e  region of increased p i t o t  pressure, it does not 
appear t h a t  t h i s  e f f ec t  w i l l  influence model t e s t i n g  except f o r  long, large, 
blunt models which may be affected by shock in te rsec t ions  on t h e  afterbody. 

However, t h e  la rge  blockage models may be unsuitable f o r  obtaining after- 
body pressure and heat- t ransfer  da t a  since it has been determined i n  other  f r e e  
j e t s  a t  Langley t h a t  t h i s  type of da ta  may be questionable when obtained with 
models close t o  t h e  blockage l i m i t s  of t h e  tunnel even when t h e  model i s  not i n  
t h e  region affected by t h e  shock system. It i s  believed t h a t  t h i s  e f f ec t  i s  



possibly due t o  a pressure feedback through t h e  wake from t h e  high-pressure 
.region i n  the  d i f fuse r  entrance. 

FLIGHT REGIMES SIMULATED 

Simulation of flight at  high a l t i t u d e  requires  duplication of t h e  appro- 
p r i a t e  low-density simulation parameter as w e l l  as t h e  conventional similarity 
parameters of Mach number and Reynolds number. Reference 12  has delineated 
low-density hypersonic f l i g h t  regimes f o r  a x i s m e t r i c  blunt bodies i n  terms 
of t h e  mean f r e e  path and nose radius. F l igh t  regimes simulated by the  HCBT 
a re  from t h e  boundary-layer regime t o  the  f u l l y  merged l aye r  ( f i g .  18). The 
charac te r i s t ic  length used i n  t h i s  f igure  w a s  t h e  radius of hemisphere cylin- 
ders  which can be operated s a t i s f a c t o r i l y  i n  t h e  tunnel  (0.2 inch t o  
1.75 inches).  

A comparison of t h e  chemical k ine t i c  regime with the  ra ref ied  gas regimes 
of reference 12  f o r  a nose radius of 1 foot  i s  presented i n  f igu re  19 which i s  
from reference 13. The HCHT provides Mach number simulation f o r  bodies t rav-  
e l ing  a t  10,000 t o  12,000 feet per second and it can be seen from f igures  18 
and 19 t h a t  most of t h e  f l i g h t  regimes simulated by t h i s  f a c i l i t y  f a l l  i n  the  
region where chemical e f f ec t s  are negl igible  (defined as e i the r  (1) a i r  tem- 
peratures a r e  not high enough t o  produce d issoc ia t ion  o r  ( 2 )  time i s  not avail-  
able  f o r  any appreciable reaction t o  occur and flow i s  e s sen t i a l ly  frozen a t  
t h e  atmospheric composition). I n  t h i s  region viscous e f f ec t s  predominate, and 
it has been pointed out by reference 13 t h a t  energy densi ty  need not be repro- 
duced s ince t i m e  i s  not avai lable  f o r  an appreciable react ion t o  occur and 
aerodynamic and heat-transfer charac te r i s t ics  can be established by Reynolds 
number, Mach number, and low-density parameter simulation. I n  general, t h e  
HCBT can provide simulation of Mach number and one other  parameter and i n  some 
instances can provide simulation of a l l  three  parameters. Each invest igat ion 
w i l l  require individual consideration. Figure 20 showing the  range of tunnel 
parameters i s  included as an a id  i n  determining whether t h e  tunnel i s  su i tab le  
f o r  a pa r t i cu la r  investigation. 

CONCLUDING REMPLRKS 

An experimental program has been conducted t o  obtain operation and per- 

Results of t h i s  
formance charac te r i s t ics  and cal ibrat ion data  f o r  a 12-inch hypersonic ceramic- 
heated open-jet wind tunnel  at the  Langley Research Center. 
program indicated t h a t  t h e  following remarks should be emphasized: 

The flow produced by t h e  conical nozzle over a range of stagnation pres- 
sure from 615 t o  65 ps ia  and stagnation temperature from 2460O R t o  3750° R 
appears su i tab le  f o r  many types of tests.  The conical nozzle produced a flow 
with a la teral  var ia t ion  i n  Mach number of kl.5 percent and an axial Mach num- 
be r  gradient decreasing from 0.13 per inch at  615 ps i a  t o  0.07 per inch at  
80 psia.  
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The boundary layer  decreased the  Mach number from t h e  inviscid value of 
14.87 t o  between 13.62 and 12.54 depending upon stagnation pressure. The uni- 
form core of t h e  12-inch-diameter nozzle varied i n  s i z e  from 7 inches i n  diam- 
e t e r  at 615 p s i a  t o  3.5 inches at  65 psia .  Boundary-layer displacement thick- 
nesses and boundary-layer thicknesses determined over a range of stagnation 
conditions were i n  approximate agreement with t h e  empirical re la t ionship devel- 
oped i n  U.S. Air Force ASD Technical Report 61-645. 

For t he  f i n a l  d i f fuse r  system a 5-inch-diameter 60° cone model with a 
blockage area of 19 percent of t h e  nozzle e x i t  area and 55 percent of t h e  isen- 
t rop ic  core area could be operated a t  600 ps i a  with a d i f fuse r  pressure recov- 
e ry  of 60 percent of normal shock recovery as compared with a clear-tunnel 
pressure recovery of 80 percent. The maximum s i ze  model which could be oper- 
a ted  decreased with a reduction i n  stagnation pressure. 
e s t  600 cone which could be operated w a s  4 inches i n  diameter. 
pressure recoveries for r e l a t ive ly  la rge  models decreased from 60 t o  65 percent 
of normal shock recovery at 615 ps i a  t o  35 t o  45 percent at  80 psia.  

A t  115 ps ia  t h e  larg-  
I n  general., 

Total-temperature measurements taken upstream of t h e  nozzle entrance indi-  
ca te  a m a x i m u m  t o t a l  temperature a t ta ined  with t h e  ceramic heat exchanger t o  be 
about 3750° R. 
l i n e  has a l a t e r a l  var ia t ion  i n  temperature of kl.5 percent. 

A 3-inch core centered about 1/2 inch off t he  nozzle center 

A s m a l l  amount of ceramic-dust contamination w a s  found i n  t h e  airstream. 
This amount of contamination w i l l  have an ins igni f icant  influence f o r  most 
t e s t s .  

I n  t h e  chamber surrounding t h e  f r e e  j e t ,  high pressures due t o  la rge  
blockage models influenced the  lateral  Mach number d is t r ibu t ion .  
f ree- je t  chamber pressures as high as four  times free-stream s t a t i c  pressure 
d id  not a f f ec t  t h e  uniform core over t h e  range of stagnation pressures. 

However, 

Langley Research Center, 
National Aeronautics and Space Administration, 

Langley Station, Hampton, Va., December 2, 1964. 
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APPENDIX 

COMPARISON OF THREE FIXED DIFFUSER CONFIGURATIONS AT MACH NUMBERS 

IN THE VICINITY OF 13 AND AT RFYNOLDS NITMBERS FROM 

17,000 TO 160,000 PER FOOT 

The diff 'user of a hypersonic wind tunnel determines the  pressure r a t i o  
required t o  start  and maintain hypersonic flow; therefore,  i n  an intermit tent  
wind tunnel such as t h e  Langley 12-inch hypersonic ceramic-heated tunnel t h e  
d i f fuse r  determines t h e  avai lable  operating t i m e .  Diffusers may be e i the r  of 
t h e  f ixed o r  adjustable  type. I n  the  adjustable-type d i f fuse r  t he  hypersonic 
flow i s  s t a r t ed  with a r e l a t ive ly  la rge  d i f fuse r  t h roa t  area which i s  then 
reduced t o  provide t h e  optimum operation time. 
compromise d i f fuse r  th roa t  a rea  must be determined which i s  l a rge  enough t o  
prevent blockage and yet  e f f i c i e n t  enough t o  provide reasonable operation time 
f o r  models. Because of s ign i f icant  viscous losses  which occur at  high Mach 
numbers and low Reynolds number conditions and t h e  interference e f fec t  of t h e  
model, d i f fuser  performance has been d i f f i c u l t  t o  predict  theore t ica l ly  and 
experiment has been r e l i ed  upon i n  d i f fuse r  design. The present t e s t s  were 
l imited t o  the  th ree  f ixed d i f fuser  configurations which were required t o  
evolve a d i f fuser  configuration t h a t  would provide a sa t i s fac tory  compromise 
between the  a b i l i t y  t o  operate with la rge  models and tunnel  operating time. 
Tests were a l so  made t o  determine the  clear-tunnel pressure recovery over a 
range of Reynolds number f o r  t he  three  configurations. 

I n  t h e  fixed-type d i f fuser  a 

Although limited, these tests a t  Mach numbers from 12.5 t o  13.6 and free-  
stream Reynolds numbers per  foot  from l 7 , O O O  t o  160,000 provide the  designer 
with needed information at high Mach numbers and at Reynolds numbers from t h e  
lowest of 2,670 per foot  reported by references 14  and 15 t o  those from 100,000 
t o  200,000 per foot  reported i n  references 16, 17, and 18. 

Test Procedure 

During these t e s t s  t h e  minimum pressure r a t i o  f o r  maintaining flow w a s  
measured f o r  t h e  d i f fuse r  configurations with and without models i n  t h e  air- 
stream. Models were t e s t ed  at a constant stagnation pressure u n t i l  t he  vacuum 
sphere reached a pressure a t  which flow breakdown occurred. The pressure a t  
t h e  d i f fuse r  e x i t  a t  t h i s  time w a s  taken t o  be t h e  d i f f i s e r  pressure recovery. 
Flow breakdown w a s  determined by the  sudden increase i n  the  model p i t o t  pres- 
sure and t h e  simultaneous increase i n  t h e  pressure i n  the  chamber surrounding 
t h e  f r ee  j e t .  
ner .  Although de ta i led  measurements were not made, s t a r t i n g  pressure r a t i o s  
were determined t o  be approximately the  same as operating pressure r a t io s  
except at t h e  lower stagnation pressures where g rea t e r  s t a r t i ng  pressure r a t i o s  
were required. 

Clear-tunnel pressure recovery was determined i n  a similar man- 
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Diffuser pressure recoveries have been expressed i n  terms of t he  percent 
of tes t - sec t ion  p i t o t  pressure at t h e  model locat ion recovered by t h e  d i f -  
fuser .  
t h e  d i f fuser  pressure recovery equals t h e  tes t -sect ion p i t o t  pressure ( re fer red  
t o  as normal. shock recovery). 
ex i s t s  as i n  t h e  present tests, t h e  p i t o t  pressure w i l l  decrease with dis tance 
from t h e  nozzle e x i t .  The da ta  reported herein are considered t o  be conserva- 
t i v e  since t h e  p i t o t  pressure used t o  determine t h e  d i f fuser  performance w a s  
taken at a typ ica l  model locat ion 2.3 inches from the  nozzle ex i t .  

Diffuser performance expressed i n  t h i s  manner w i l l  be 100 percent when 

When a pos i t ive  axial Mach number gradient 

Model Capability of Diffuser Configurations 

The three  d i f fuse r  configurations t e s t ed  i n  t h i s  invest igat ion t o  obtain 
a d i f fuser  which would provide a sa t i s f ac to ry  compromise between tunnel  opera- 
t i o n  with reasonably la rge  models and t e s t i n g  t i m e  a r e  shown i n  figure 21. 
Because of a lack of design data  f o r  d i f fuse r s  i n  these Mach number and 
Reynolds number ranges, basic  d i f fuser  design w a s  based on data  from refer -  
ence 19 which gives r e su l t s  of an invest igat ion with d i f fusers  at  Mach 6 and 
Reynolds numbers per  foot  of 106. The following t a b l e  summarizes t h e  model 
capabi l i ty  and operating time of t he  three  d i f fuse r  configurations at a stagna- 
t i o n  pressure of 615 ps i a  and a stagnation temperature of 3240° R: 

_ _  

Conf ig- 
u ra t  i on 
. .. 

1 

2 

3 

Flow maintained 

2.5-in. D hemisphere 
cylinder 

3.0-in. D hemisphere 
cylinder 

4.0-in. D hemisphere 
cylinder 

.. 

T e s t  
time , 

sec  

48 

48 

25 

Flow l o s t  

3.0-in. D hemisphere 
cylinder 

4.0-in. D hemisphere 
cylinder 

4.5-in. D hemisphere 
cylinder 

Clear- 
tunnel  

ope ra t ing  
t i m e ,  sec 

65 

65 

57 

The design of d i f fuse r  configuration 1, t h e  i n i t i a l  configuration, w a s  
based on t h e  da ta  of reference 19 and a l 5 O  entrance scoop w a s  chosen t o  per- 
m i t  t h e  longest f r ee - j e t  length consistent with t h e  s i z e  of t he  f r ee - j e t  cham- 
ber .  
models up t o  2.5 inches i n  diameter. Reference 19 indicated t h a t  changing t h e  
scoop of configuration 1 from a 150 scoop t o  a two-stage (two angle) 1 5 0 - 8 O  
scoop and shortening t h e  f ree- je t  length would improve model capabi l i ty .  D i f -  
fuser configuration 2, t h e  two-stage-scoop Configuration, m a d e  possible  opera- 
t i o n  of t h e  tunnel with hemisphere models up t o  3 inches i n  diameter. 
e f f o r t  t o  fu r the r  increase t h e  model capabili ty,  t h e  throa t  area of configura- 
t i o n  2 w a s  increased from 69 percent t o  79 percent of t h e  nozzle e x i t  area.  
Configuration 3, with t h e  increased throa t  area, allowed t h e  tunnel  t o  operate 

With t h i s  configuration t h e  tunnel  could be operated with hemisphere 

I n  an 
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with hemisphere models up t o  4 inches i n  diameter, but t he  operating t i m e  f o r  
t h e  c lear  tunnel  and a 3-inch-diameter hemisphere model decreased about 10 per- 
cent. 
and, therefore, only these three  configurations were tes ted .  

The 4-inch-diameter hemisphere m e t  t h e  requirements of t h e  tes t  program 

Variation i n  Diffuser Performance With Reynolds Number 

Measurements were m a d e  t o  determine t h e  performance of t h e  three d i f fuser  
configurations over a range of Reynolds numbers. To obtain t h e  Reynolds num- 
be r  variation, tests were conducted a t  a constant stagnation temperature over 
a range of stagnation pressure. Figure 22 shows t h e  percentage var ia t ion of 
normal shock pressure recovery f o r  t h e  c l ea r  tunnel  with Reynolds number per  
foot  and t h e  corresponding stagnation pressure. Over t h i s  range of Reynolds 
number all configurations had decreases i n  pressure recovery, but t h e  r e l a t i v e  
performance of t h e  d i f fuse r  configurations remained t h e  same. 
and 2 had t h e  same clear-tunnel performance over t h e  range of Reynolds number 
with a decrease from 90 percent a t  a Reynolds number of 160,000 

(ptYl = 60 psia),  whereas configuration 3 w a s  about 10 percent lower over t h i s  

range. Figure 23 shows these data  i n  terms of t h e  pressure r a t i o  required t o  
maintain flow. Configurations 1 and 2 required a pressure r a t i o  of 1600 and 
configuration 3 required a pressure r a t i o  of 1800 over the  range of Reynolds 
number and stagnation pressure. 
decrease i n  d i f fuse r  performance at lower Reynolds numbers since a reduction 
i n  pressure r a t i o  would be expected with t h e  decrease i n  Mach number with 
Reynolds number. The constant pressure r a t i o  may be t h e  r e su l t  of compen- 
sating trends with t h e  expected decrease i n  pressure r a t i o  with a decrease i n  
Mach number being o f f se t  by the  grea te r  viscous e f f e c t s  at  L o w e r  Reynolds nwn- 
bers.  The clear-tunnel operating time remained about constant over t he  range 
of Reynolds number, which would be expected as a r e s u l t  of t he  constant pres- 
sure r a t i o  required t o  maintain flow over t h i s  range. It w a s  a l so  determined 
t h a t  a l l  d i f fuse r s  had decreases of 20 t o  25 percent i n  pressure recovery with 
la rge  models i n s t a l l ed  over t h i s  range of Reynolds number and t h a t  t he  r e l a t ive  
performance of t h e  d i f fuse r s  with models d id  not change over t h i s  range. 

Configurations 1 

600 ps i a  t o  60 percent at a Reynolds number of l 7 , O O O  per foot  
( P t , l  = ) 

This method of presentation a l so  indicates  a 

Comparison With Other Free-Jet Wind Tunnels 

Figure 24 shows a comparison of t h e  clear-tunnel pressure recovery f o r  t h e  
Langley 12-inch hypersonic ceramic-heated tunnel  with other  f ree-  j e t  wind tun- 
ne ls  i n  t h e  Mach number range from 6 t o  20. 
nearly as possible t o  eliminate geometrical differences,  Reynolds number 
e f fec ts ,  t es t - sec t ion  locat ion on which d i f fuse r  recovery i s  based, and so  
for th ,  and it i s  believed t h a t  these fac tors  w i l l  have a r e l a t ive ly  s m a l l  
e f f ec t  on t h e  comparison. Within these l imi ta t ions  it appears t h a t  Mach num- 
be r  has a moderate e f f ec t  on normal-shock pressure recovew. For an area r a t i o  
of 0.6, recoveries f o r  t h e  c l ea r  tunnel of about 36 percent grea te r  than normal 
shock a re  obtained a t  a Mach number of 6, whereas recoveries close t o  100 per- 
cent of normal shock recovery can be obtained a t  Mach numbers from 12  t o  19. 

The data  have been selected as 

20 
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Figure 25 shows a comparison of t h e  clear-tunnel pressure recovery of t he  
HCHT with other  f r ee - j e t  wind tunnels over a range of free-stream Reynolds num- 
ber  per foot .  
second m i n i m  area  r a t i o  are believed t o  have a s m a l l  influence on the  com- 
parison. 
point corresponding t o  t h a t  tunnel. 
a Reynolds number of 106, a l l  data  points are f o r  Mach numbers greater  than 
about 10 where t h e  e f f ec t  of Mach number appears t o  be s m a l l .  
Mach 6 are  included since t h i s  d i f fuser  w a s  of almost i den t i ca l  geometry as the  
d i f fuse r  i n  t h e  present tests. 
t h e  tests, it i s  seen t h a t  general agreement i s  obtained between the  Mach 6 
data  and an extrapolation of t he  data  from t h e  present tests t o  a Reynolds num- 
ber  of 106. The da ta  f o r  an area r a t i o  of 1 were obtained from reference 18 by 
basing t h e  pressure recovery on measurements made a t  a s t a t ion  2 inches from 
t h e  nozzle e x i t  a t  which point t he  l o c a l  Mach number w a s  approximately the  same 
as t h a t  of t h e  present tests, and these data  are i n  general  agreement with the  
HCHT data. The Ohio S ta t e  and ARL data are a l so  i n  general agreement with data 
of t h e  present t e s t s .  
approach t h e  r e s u l t s  obtained at  AEDC at a Reynolds number per  foot of 2,670, 
and an extrapolation of t h e  0.69 area-rat io  da ta  of t h e  present t e s t s  i s  i n  
general  agreement with t h e  0.68 area-rat io  data  from AEDC. 
a rea  r a t i o  w a s  found t o  be 1 by AEDC, whereas it w a s  a t  l e a s t  as low as 0.69 
i n  t h e  present t e s t s  and as low at 0.6 i n  t h e  tes ts  of reference 19. 
appears t h a t  a curve showing t h e  var ia t ion  of normal shock pressure recovery 
with Reynolds number f o r  an area r a t i o  of 1 must cross over t he  curves f o r  area 
r a t i o s  of 0.69 and 0.79 a t  Reynolds numbers per  foot  between 17,000 and 2,670 
as the  l a rge r  area r a t i o  becomes more e f f i c i en t .  

Geometrical differences between these tunnels other than t h e  

The second m i n i m u m  area r a t i o  f o r  each tunnel i s  shown below the  data  
With t h e  exception of t he  Mach 6 data  a t  

The data  a t  

Considering t h e  Mach number difference between 

The t rend of t h e  data  from the  present t e s t s  i s  t o  

The most e f f i c i en t  

It 

Figure 25 i l l u s t r a t e s  t h e  general t rend of decreasing d i f fuser  pressure 
recovery from values i n  excess of normal shock recovery a t  Reynolds numbers of 
106 t o  10 t o  20 percent of normal shock recovery f o r  a Reynolds number of 
2,670 per foot .  A t  t h e  higher Reynolds numbers the  highest clear-tunnel per- 
formance i s  f o r  a d i f fuse r  second minimum area r a t i o  of 0.6 or lower, whereas 
at  Reynolds numbers between 17,000 and 2,670 t h e  performance i s  more e f f i c i en t  
f o r  an area r a t i o  of 1.0. However, it should be pointed out t h a t  the  configura- 
t i o n  which'provides the highest clear-tunnel performance may not provide the  
optimum compromise i n  terms of models which can be operated. 
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Figure 1.- Schematic drawing of 12-inch hypersonic ceramic-heated tunnel. 
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Figure 2.- Cross-sectional view of pebble-bed heater. 
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Figure 3.- Cross-sectional view of nozzle, test section, and diffuser. 
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Figure 4.- Block diagram of Langley 12-inch hypersonic ceramic-heated tunnel. 
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(a)  Total-pressure survey rake. 

( b )  Total-temperature survey rake. L-63-6934 

Figure 5.- Instruments used in measuring pressure and temperature in Langley 12-inch 
ceramic-heated tunnel. 
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Figure 5.- Concluded. 
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Figure 7.- Lateral  total-pressure surveys and Mach number d is t r ibu t ions  f o r  several  stagna- 
t i o n  pressures at x = 2.3 inches. T t  = 3240° R .  
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Figure 8.- Comparison of total pressure and temperature profiles at various stagnation 
pressures. 
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Figure 9.- Axial Mach number gradient from total-pressure surveys along center l i n e  of 
nozzle a t  various stagnation pressures. 
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Figure 12.- A d- inch-diameter hemisphere cylinder before and after t e s t .  
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(a) Boundary-layer displacement thickness. 
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Figure 13. -  Variation of boundary-layer displacement thickness and boundary-layer thickness 
at nozzle exit with stagnation pressure. Tt = 3240° R. 
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Figure 14.- Comparison of a i r  stagnation temperature measured by s e t t l i n g  chamber and t e s t -  
sect ion probes. 
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blockage. Flagged symbols indicate lowest stagnation pressure at which model could be operated. 
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Figure 16.- Effect of chamber pressure on l a t e r a l  pitot-pressure profile.  x = 2.3 in;  
pt,l = 600 psia. 
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